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We study the stability and efficiency of social and economic networks, when self-
interested individuals can form or sever links. First, for two stylized models, we
characterize the stable and efficient networks. There does not always exist a stable
network that is efficient. Next, we show that this tension persists generally: to
assure that there exists a stable network that is efficient, one is forced to allocate
resources to nodes that are not responsible for any of the production. We charac-
terize one such allocation rule: the equal split rule, and another rule that arises
naturally from bargaining of the players. Journal Economic Literature Classification
Numbers: A14, D20, J00. � 1996 Academic Press, Inc.

1. INTRODUCTION

Network structures play an important role in the organization of some
significant economic relationships. Informal social networks are often the
means for communicating information and for the allocation of goods and
services which are not traded in markets. Among such goods one can men-
tion not only invitations to parties and other forms of exchanging
friendship, but also information about job openings, business oppor-
tunities, and the like. In the context of a firm, the formal network through
which relevant information is shared among the employees may have an
important effect on the firm's productivity. In both contexts, the place of an
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agent in the network may affect not only his or her productivity, but also
his or her bargaining position relative to others and this might be reflected
in the design of such organizations.

The main goal of this paper is to begin to understand which networks
are stable, when self-interested individuals choose to form new links or to
sever existing links. This analysis is designed to give us some predictions
concerning which networks are likely to form, and how this depends on
productive and redistributive structures. In particular, we will examine the
relationship between the set of networks which are productively efficient,
and those which are stable. The two sets do not always intersect. Our
analysis begins in the context of several stylized models, and then continues
in the context of a general model.

This work is related to a number of literatures which study networks in
a social science context. First, there is an extensive literature on social
networks from a sociological perspective (see Wellman and Berkowitz [28]
for one recent survey) covering issues ranging from the interfamily
marriage structure in 15th century Florence to the communication patterns
among consumers (see Iacobucci and Hopkins [11]). Second, occasional
contributions to microeconomic theory have used network structures for
such diverse issues as the internal organization of firms (e.g., Boorman [2],
Keren and Levhari [16]), employment search (Montgomery [18]),
systems compatibility (see Katz and Shapiro [15]), information transmis-
sion (Goyal [5]), and the structure of airline routes (Hendricks, et al.
[7, 8], Starr and Stinchcombe [26]). Third, there is a formal game
theoretic literature which includes the marriage problem and its extensions
(Gale and Shapley [4], Roth and Sotomayor [24]), games of flow (Kalai
and Zemel [14]), and games with communication structures (Aumann
and Myerson [1], Kalai et al. [13], Kirman et al. and Myerson [19]).
Finally, the operations research literature has examined the optimization
of transportation and communications networks. One area of that research
studies the allocation of costs on minimal cost spanning trees and makes
explicit use of cooperative game theory. (See Sharkey [25] for a recent
survey.)

The main contribution of this paper to these existing literatures is the
modelling and analysis of the stability of networks when the nodes them-
selves (as individuals) choose to form or maintain links. The issue of graph
endogeneity has been studied in specific contexts including cooperative
games under the Shapley value (see Aumann and Myerson [1]) and the
marriage problem (see Roth and Sotomayor [24]). The contribution here
lies in the diversity and generality of our analysis, as well as in the focus
on the tension between stability and efficiency.

Of the literatures we mentioned before, the one dealing with cooperative
games that have communication structures is probably the closest in
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methodology to our analysis. This direction was first studied by Myerson
[19], and then by Owen [22], van den Nouweland and Borm [21], and
others (see van den Nouweland [20] for a detailed survey). Broadly speak-
ing, the contribution of that literature is to model restrictions on coalition
formation in cooperative games. Much of the analysis is devoted to some
of the basic issues of cooperative game theory such as the characterization
of value allocations with communication structures. Our work differs from
that literature in some important respects. First, in our framework the
value of a network can depend on exactly how agents are interconnected,
not just who they are directly or indirectly connected to. Unlike games
with communication, different forms of organization might generate dif-
ferent levels of profit or utility, even if they encompass (interconnect)
exactly the same players. Second, we focus on network stability and forma-
tion and its relationship to efficiency. Third, an important aspect of our
work is the application of this approach to some specific models of the
organization of firms and network allocation mechanisms of non-market
goods.

The paper proceeds as follows. In Section 2 we provide the definitions
comprising the general model. In Section 3 we examine several specific ver-
sions of the model with stylized value functions. For each of these models
we describe the efficient networks and the networks which are stable. We
note several instances of incompatibility between efficiency and stability. In
Section 4, we return to the general model to study means of allocating the
total production or utility of a network. We examine in detail which types
of allocation rules allow for stability of efficient networks. We conclude
with a result characterizing the implications of equal bargaining power for
allocation rules.

2. DEFINITIONS

Let N=[1, ..., N ] be the finite set of players. The network relations
among these players are formally represented by graphs whose nodes
are identified with the players and whose arcs capture the pairwise rela-
tions.

2.1. Graphs

The complete graph, denoted gN, is the set of all subsets of N of size 2.
The set of all possible graphs on N is then [g | g/gN]. Let ij denote
the subset of N containing i and j and is referred to as the link ij. The
interpretation is that if ij # g, then nodes i and j are directly connected
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(sometimes referred to as adjacent), while if ij � g, then nodes i and j are
not directly connected.1

Let g+ij denote the graph obtained by adding link ij to the existing
graph g and g&ij denote the graph obtained by deleting link ij from the
existing graph g (i.e., g+ij=g _ [ij] and g&ij=g"[ij]).

Let N(g)=[i | _j s.t. ij # g] and n(g) be the cardinality of N(g). A path
in g connecting i1 and in is a set of distinct nodes [i1 , i2 , ..., in]/N(g) such
that [i1 i2 , i2 i3 , ..., in&1 in]/g.

The graph g$/g is a component of g, if for all i # N(g$) and j # N(g$),
i{ j, there exists a path in g$ connecting i and j, and for any i # N(g$) and
j # N(g), ij # g implies that ij # g$.

2.2. Values and Allocations

Our interest will be in the total productivity of a graph and how this is
allocated among the individual nodes. These notions are captured by a
value function and an allocation function.

The value of a graph is represented by v: [g | g/gN] � R. The set of all
such functions is V. In some applications the value will be an aggregate of
individual utilities or productions, v(g)=�i ui (g), where ui : [g | g/gN] �
R.

A graph g/gN is strongly efficient if v(g)�v(g$) for all g$/gN. The term
strong efficiency indicates maximal total value, rather than a Paretian
notion. Of course, these are equivalent if value is transferable across
players.

An allocation rule Y : [g | g/gN]_V � RN describes how the value
associated with each network is distributed to the individual players.
Yi (g, v) is the payoff to player i from graph g under the value function v.

2.3. Stability

As our interest is in understanding which networks are likely to arise in
various contexts, we need to define a notion which captures the stability of
a network. The definition of a stable graph embodies the idea that players
have the discretion to form or sever links. The formation of a link requires
the consent of both parties involved, but severance can be done
unilaterally.

47SOCIAL AND ECONOMIC NETWORKS

1 The graphs analyzed here are non-directed. That is, it is not possible for one individual
to link to another, without having the second individual also linked to the first. (Graphs
where unidirectional links are possible are sometimes called digraphs.) Furthermore, links are
either present or not, as opposed to having connections with variable intensities (a valued
graph). See Iacobucci [10] for a detailed set of definitions for a general analysis of social
networks. Such alternatives are important, but are beyond the scope of our analysis.
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The graph g is pairwise stable respect to v and Y if

(i) for all ij # g, Yi (g, v)�Yi (g&ij, v) and Yj (g, v)�Yj (g&ij, v)
and

(ii) for all ij � g, if Yi (g, v)<Yi (g+ij, v) then Yj (g, v)>Yj (g+ij, v).

We shall say that g is defeated by g$ if g$=g&ij and (i) is violated for
ij, or if g$=g+ij and (ii) is violated for ij.

Condition (ii) embodies the assumption that, if i strictly prefers to form
the link ij and j is just indifferent about it, then it will be formed.

The notion of pairwise stability is not dependent on any particular for-
mation process. That is, we have not formally modeled the procedure
through which a graph is formed. Pairwise stability is a relatively weak
notion among those which account for link formation and as such it admits
a relatively larger set of stable allocations than might a more restrictive
definition or an explicit formation procedure. (See Section 5 for more
discussion of this.) For our purposes, such a weak definition provides
strong results, since in many instances it already narrows the set of graphs
substantially.

There are many obvious modifications of the above definition which one
might consider. One obvious strengthening would be to allow changes to
be made by coalitions which include more than two players. To keep the
presentation uncluttered, we will go through the analysis using only the
stability notion defined above and relegate all the remarks on other varia-
tions to Section 5.

3. TWO SPECIFIC MODELS

We begin by analyzing several stylized versions of the general model out-
lined in the last section. There are innumerable versions which one can
think of. The examples presented in this section are meant to capture some
basic and diverse issues arising in social and economic networks. In
particular, we illustrate what the application of pairwise stability predicts
concerning which graphs might form and whether these are strongly
efficient.

3.1. The Connections Model

This first example models social communication among individuals.2

Individuals directly communicate with those to whom they are linked.

48 JACKSON AND WOLINSKY

2 Goyal [5] considers a related model. His is a non-cooperative game of one-sided link for-
mation and it differs in some of the specifications as well, but it is close in terms of its flavor
and motivation.
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Through these links they also benefit from indirect communication from
those to whom their adjacent nodes are linked, and so on. The value of
communication obtained from other nodes depends on the distance to
those nodes. Also, communication is costly so that individuals must weigh
the benefits of a link against its cost.

Let wij�0 denote the ``intrinsic value'' of individual j to individual i and
cij denote the cost to i of maintaining the link ij. The utility of each player
i from graph g is then

ui (g)=wii+ :
j{i

$tij wij& :
j : ij # g

cij ,

where tij is the number of links in the shortest path between i and j (setting
tij=� if there is no path between i and j), and 0<$<1 captures the idea
that the value that i derives from being connected to j is proportional to
the proximity of j to i.3 Less distant connections are more valuable than
more distant ones, but direct connections are costly. Here

v(g)= :
i # N

ui (g).

3.1.1. Strong Efficiency in the Connections Model

In what follows we focus on the symmetric version of this model, where
cij=c for all ij and wii=1 for all j{i and wij=0. The term star describes
a component in which all players are linked to one central player and there
are no other links: g/gN is a star if g{< and there exists i # N such that
if jk # g, then either j=i or k=i. Individual i is the center of the star.

Proposition 1. The unique strongly efficient network in the symmetric
connections model is

(i) the complete graph gN if c<$&$2,

(ii) a star encompassing everyone if $&$2<c<$+((N&2)�2) $2,
and

(iii) no links if $+((N&2)�2) $2<c.

Proof. (i). Given that $2<$&c, any two agents who are not directly
connected will improve their utilities, and thus the total value, by forming
a link.

(ii) and (iii). Consider g$, a component of g containing m individuals.
Let k�m&1 be the number of links in this component. The value of these
direct links is k(2$&2c). This leaves at most m(m&1)�2&k indirect links.

49SOCIAL AND ECONOMIC NETWORKS
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The value of each indirect link is at most 2$2. Therefore, the overall value
of the component is at most

k(2$&2c)+(m(m&1)&2k) $2. (1)

If this component is a star then its value would be

(m&1)(2$&2c)+(m&1)(m&2) $2. (2)

Note that (1)&(2)=(k&(m&1))(2$&2c&2$2), which is at most 0 since
k�m&1 and c>$&$2, and less than 0 if k>m&1. The value of this
component can equal the value of the star only when k=m&1. Any graph
with k=m&1, which is not a star, must have an indirect connection which
has a path longer than 2, getting value less than 2$2. Therefore, the value
of the indirect links will be below (m&1)(m&2) $2, which is what we get
with star.

We have shown that if c>$&$2, then any component of a strongly
efficient graph must be a star. Note that any component of an strongly
efficient graph must have nonnegative value. In that case, a direct calcula-
tion using (2) shows that a single star of m+n individuals is greater in
value than separate stars of m and n individuals. Thus if the strongly
efficient graph is nonempty, it must consist of a single star. Again, it follows
from (2) that if a star of n individuals has nonnegative value, then a star
of n+1 individuals has higher value. Finally, to complete (ii) and (iii) note
that a star encompassing everyone has positive value only when
$+((N&2)�2) $2>c. K

This result has some of the same basic intuition as the hub and spoke
analysis of Hendricks et al. [8] and Starr and Stinchcombe [26], except
that the values of graphs are generated in different manners.

3.1.2. Stability in the Connections Model without Side Payments

Next, we examine some implications of stability for the allocation rule
Yi (g)=ui (g). This specification might correspond best to a social network
in which by convention no payments are exchanged for ``friendship.''

Proposition 2. In the symmetric connections model with Yi (g)=ui (g):

(i) A pairwise stable network has at most one (non-empty) compo-
nent.

(ii) For c<$&$2, the unique pairwise stable network is the complete
graph, gN.

(iii) For $&$2<c<$, a star encompassing all players is pairwise
stable, but not necessarily the unique pairwise stable graph.

50 JACKSON AND WOLINSKY
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(iv) For $<c, any pairwise stable network which is non-empty is such
that each player has at least two links and thus is inefficient.4

Proof. (i) Suppose that g is pairwise stable and has two or more non-
trivial components. Let uij denote the utility which accrues to i from
the link ij, given the rest of g: so uij=ui (g+ij)&ui (g) if ij � g and
uij=ui (g)&ui (g&ij) if ij # g. Consider ij # g. Then uij�0. Let kl belong to
a different component. Since i is already in a component with j, but k is
not, it follows that ukj>uij�0, since k will also receive $2 in value for the
indirect connection to i, which is not included in uij. For similar reasons,
u jk>ulk�0. This contradicts pairwise stability, since jk � g.

(ii) It follows from the fact that in this cost range, any two agents
who are not directly connected benefit from forming a link.

(iii) It is straightforward to verify that the star is stable. It is the
unique stable graph in this cost range if N=3. It is never the unique stable
graph if N=4. (If $&$3<c<$, then a line is also stable, and if c<$&$3,
then a circle5 is also stable.)

(iv) In this range, pairwise stability precludes ``loose ends'' so that
every connected agent has at least two links. This means that the star is not
stable, and so by Proposition 1, any non-empty pairwise stable graph must
be inefficient. K

Remark. The results of Proposition 2 would clearly still hold if one
strengthens pairwise stability to allow for deviations by groups of
individuals instead of just pairs. This would lean even more heavily on the
symmetry assumption.

Remark. Part (iv) implies that in the high cost range (where $<c) the
only non-degenerate networks which are stable are those which are over-
connected from an efficiency perspective. (We will return to this tension
between strong efficiency and stability later, in the analysis of the general
model.) Since $<c, no individual is willing to maintain a link with another
individual who does not bring additional new value from indirect connec-
tions. Thus, each node must have at least two links, or none. This means
that the star cannot be stable: the center will not wish to maintain links
with any of the end nodes.

The following example features an over-connected pairwise stable graph.
The example is more complex than necessary (a circle with N=5 will

51SOCIAL AND ECONOMIC NETWORKS

4 If $+((N&2)�2) $2>c, then all pairwise stable networks are inefficient since then the
empty graph is also inefficient.

5 g/gN is a circle if g{< and there exists [i1 , i2 , ..., in]/N such that
g=[i1 i2 , i2 i3 , ..., in&1 in , in i1].
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illustrate the same point), but it illustrates that pairwise stable graphs can
be more intricate than the simple stars and circles.

Example 1. Consider the ``tetrahedron'' in Fig. 1. Here N=16. A star
would involve 15 links and a total value of 30$+210$2&30c. The
tetrahedron has 18 links and a total value of 36$+48$2+60$3+72$4+
24$5&36c, which (since c>$ and $<1) is less than that of the star.

Let us verify that the tetrahedron is pairwise stable. (Recall that uij

denotes the utility which accrues to i from the link ij given the rest of g:
so uij=ui (g+ij)&ui (g) if ij � g and uij=ui (g)&ui (g&ij) if ij # g.) Given
the symmetry of the graph, the following inequalities assure pairwise
stability of the graph: u12�0, u21�0, u23�0, u13�0, u14�0, u15�0, and
u26�0. The first three inequalities assure that no one wants to sever a link.
The next three inequalities assure that no new link can be improving to
two agents if one of those agents is a ``corner'' agent. The last inequality
assures that no new link can be improving to two agents if both of those
agents are not ``corner'' agents. It is easy to check that u21>u12, u23>u12,
u13<u14, u15<u14, and u14<u26. Thus we verify that u12�0 and u26�0:

u12=$&$8+$2&$7+$3&$6+2($4&$5)&c,

u26=$&$5+$2&$4+$2&$5+2($3&$4)&c,

If c=1 and $=0.9, then (approximately) u12=0.13 and u26=&0.17.

Figure 1

52 JACKSON AND WOLINSKY
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In this example, the graph is stable since each link connects an individual
indirectly to other valuable individuals. The graph cannot be too dense,
since it then becomes too costly to maintain links relative to their limited
benefit. The graph cannot be too sparse as nodes will have incentives to
add additional links to those links which are currently far away and�or
sever current links which are not providing much value.

Before proceeding, we remark that the results presented for the connec-
tions model are easily adapted to replace $tij by any non-increasing func-
tion f (tij), by simply substituting f (tij) whenever $tij appears. One such
alternative specification is a truncated connections model where players
benefit only from connections which are not mode distant than some
bound D. The case of D=2, for example, has the natural interpretation
that i benefits from j only if they are directly connected or if they have a
``mutual friend'' to whom both are directly connected. It is immediate to
verify that Propositions 1 and 2 continue to hold for the truncated connec-
tions models. In addition we have the following observations.

Proposition 3. In the truncated connections model with bound D

(i) tij�2D&1 for all i and j which belong to a pairwise stable
component.

(ii) For D=2 and $<c no member in a pairwise stable component is
in a position to disconnect all the paths connecting any two other players by
unilaterally severing links.

Proof. (i) Suppose tij>2D&1. Consider one of the shortest paths
between i and j. Let m belong to this path and tmj=1. Note that tik>D,
for any k such that j belongs to the shortest path between m and k and
such that tmk�D. This is because tjk�D&1 and tij>2D&1. Therefore,
uij>umj (the inequality is strict since uij includes the value to i of the con-
nection to m which is not present in umj) so i wants to link directly to j.
(Recall the notation uij from the proof of Proposition 2.) An analogous
argument establishes that j wants to link directly to i.

(ii) Suppose that player i occupies such a position. Let j and k be
such that i can unilaterally disconnect them and such that tjk is the longest
minimal path among all such pairs. Since by (i), tjk�3, there is at least one
of them, say j, such that tij=1. But then i prefers to sever the link to j,
since the maximality of tjk implies that there is no h to whom i 's only
indirect connection passes through j (otherwise, thk>tjk). K

There are obvious extensions to the connections model which seem quite
interesting. For instance, one might have a decreasing value for each con-
nection (direct or indirect) as the total amount of connectedness increases.

53SOCIAL AND ECONOMIC NETWORKS
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Also, if communication is modeled as occurring with some probability
across each link, then one cares not only about the shortest path, but also
about other paths in the event that communication fails across some link
in the shortest path.6

3.1.3. Stability in the Connections Model with Side Payments

In the connections model with side payments, players are able to
exchange money in addition to receiving the direct benefits from belonging
to the network. The allocation rule will reflect these side payments which
might be agreed upon in bilateral negotiations or otherwise. This version
exposes another source of discrepancy between the strongly efficient and
stable networks. Networks which produce high values might place certain
players in key positions that will allow them to ``claim'' a disproportionate
share of the total value. This is particularly true for the strongly efficient
star-shaped network. This induces other players to form additional links
that mitigate this power at the expense of reducing the total value. This
consideration is illustrated by the following example.

Example 2. Let N=3 and v be as in the basic connections model. The
graph g=[12, 23] is strongly efficient for $&$2<c<$. Suppose that the
allocation rule Y allocates the whole value of any graph to the players
having links in the graph and reflects equal bargaining power in the sense
that Yi (g, v)&Yi (g&ij, v)=Yj (g, v)&Yj (g&ij, v) for all g, i, and j (we
characterize this equal bargaining power rule in Theorem 4). Then
Y1(g, v)=Y3(g, v)=$+ 2

3$2&c and Y2(g, v)=2$+ 2
3 $2&2c.7 That is, each

of the peripheral players pays the center 1
3$2. In the alternative network

g$=[12, 23, 31] (the circle), Y1(g$, v)=Y2(g$, v)=Y3(g$, v)=2$&2c, and
no side payments are exchanged. In the range $& 2

3$2<c<$ the strongly
efficient network g is uniquely stable, but in the range $&$2<c<$& 2

3 $2

the inefficient network g$ is the only stable one.

As mentioned above, the reason for the tension between efficiency and
stability is the strong bargaining position of the center in g: when c is not
too large, g is destabilized by the link between the peripheral players who
increase their share at the expense of the center.

This version of the connections model can be adapted to discuss issues
in the internal organization of firms. Consider a firm whose output depends

54 JACKSON AND WOLINSKY

6 Two such alternative models are discussed briefly in the appendix of Jackson and
Wolinsky [12].

7 To see this, note that Y1( g&23, v)=Y2( g&23, v)=$&c, Y3( g&23, v)=0, and
Y1( g&12, v)=0, Y2( g&12, v)=Y3( g&12, v)=$&c. Then from equal bargaining power, we
have that Y2( g, v)&($&c)=Y1( g, v)&0=Y3( g, v)&0. Then using the fact that Y1( g, v)+
Y2( g, v)+Y3( g, v)=4$+2$2&4c, one can solve for Y( g, v).
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on the organization of the employees as a network. The network would
capture here the structure of communication and hence coordination
between workers. The nodes of the graph correspond to the workers. (For
simplicity we exclude the owner from the graph, although it is not
necessary for the result.) The total value of the firm's output, v, is as above.
The allocation rule, Y, specifies the distribution of the total value between
the workers (wages) and the firm (profit). It captures the outcome of wage
bargaining within the firm, where labor contracts are not binding, and
where the bargained wage of a worker is half the surplus associated with
that worker's employment. The assumption built into this rule is that the
position of a worker who quits cannot be filled immediately, so Yi (g&i, v)
and v(g&i)&�j{i Yj (g&i, v) are identified as the bargaining disagree-
ment points of the worker and firm respectively (where g&i denotes the
graph which remains when all links including i are deleted). Thus,

Yi (g, v)=Yi (g&i, v)+ 1
2 _v(g)& :

j{i

Yj (g, v)&Yi (g&i, v)

&\v(g&i)& :
j{i

Yj (g&i, v)+& .

If we think of the owner as external to the network, this Y is not balanced,
as the firm's profit is v&�i Yi .

8

Example 3. Let N=3 and v be as above. Assume Yi (g&i, v)=0
which means that a worker who quits is not paid. The graph g=[12, 23]
is strongly efficient for $&$2<c<$. Note that Y1(g, v)=Y3(g, v)=
2
3$+ 1

2$2& 2
3c and Y2(g, v)= 4

3$+ 1
2$2& 4

3c, leaving a profit of 4
3$+ 1

2$2& 4
3 c

for the firm. Consider g$=[12, 23, 31]. Here Y1(g$, v)=Y2(g$, v)=
Y3(g$, v)= 4

3$& 4
3c, leaving a profit of 2($&c) for the firm.

In the range $&$2<c<$& 3
4$2 the network g is the strongly efficient

form, but the network g$ is more profitable to the firm, since it weakens the
bargaining position of the worker occupying the center position in the
graph g. This point complements existing work on internal wage bargain-
ing and its consequences for the structure of firms. Stole and Zweibel
(1993) investigate how internal wage bargaining distorts employment
decisions, the extent of investment in capital, and the division of the work-
force among activities (see also Grout [6] and Horn and Wolinsky [9]).
The current framework adds explicitly the network organization of the
firm.
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8 If the owner is included explicitly as a player, then Y coincides with the equal bargaining
power rule examined in Section 4.
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3.2. The Co-author Model

Here nodes are interpreted as researchers who spend time writing papers.
Each node's productivity is a function of its links. A link represents a
collaboration between two researchers. The amount of time a researcher
spends on any given project is inversely related to the number of projects
that researcher is involved in. Thus, in contrast to the connections model,
here indirect connections will enter the utility function in a negative way as
they detract from one's co-author time.

The fundamental utility or productivity of player i given the network g
is

ui (g)= :
j : ij # g

wi (ni , j, nj)&c(ni),

where wi (ni , j, nj) is the utility derived by i from a direct contact with j
when i and j are involved in ni and nj projects, respectively, and c(ni) is the
cost to i of maintaining ni links.

We analyze a more specific version of this model where utility is given
by the following expression. For ni>0,

ui (g)= :
j : ij # g _

1
ni

+
1
nj

+
1

ni nj&=1+\1+
1
ni+ :

j : ij # g

1
nj

,

and for ni=0, ui (g)=0. This form assumes that each researcher has a unit
of time which they allocate equally across their projects. The output of
each project depends on the total time invested in it by the two
collaborators, 1�ni+1�nj , and on some synergy in the production process
captured by the interactive term 1�ni nj .

The interactive term is inversely proportional to the number of projects
each author is involved with. Here there are no direct costs of connection.
The cost of connecting with a new author is that the new link decreases the
strength of the interaction term with existing links.9

Proposition 4. In this co-author model: (i) if N is even, then the
strongly efficient network is a graph consisting of N�2 separate pairs, and (ii)
a pairwise stable network can be partitioned into fully intraconnected com-
ponents, each of which has a different number of members. (If m is the num-
ber of members of one such component and n is the next largest in size, then
m>n2.)
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9 An alternative version the co-author model appears in the appendix of Jackson and
Wolinsky [12].
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Proof. To see (i), note that

:
i # N

ui (g)= :
i : ni>0

:
j : ij # g _

1
ni

+
1
nj

+
1

ni nj& ,

so that

:
i # N

ui (g)�2N+ :
i : ni>0

:
j : ij # g

1
ni nj

,

and equality can only hold if ni>0 for all i. To finish the proof of (i), note
that �i : ni>0 �j : ij # g 1�ninj�N, with equality only if ni=1=nj for all i and
j, and 3N is the value of N�2 separate pairs.

To see (ii), consider i and j who are not linked. It follows directly from
the formula for ui (g) that i will strictly want to link to j if and only if

1
nj+1 \1+

1
ni+1+>_ 1

ni
&

1
ni+1& :

k : k{j, ik # g

1
nk

,

(substitute 0 on the right-hand side if ni=0) which simplifies to

ni+2
nj+1

>
1
ni

:
k : k{j, ik # g

1
nk

. (V)

The following facts are then true of a pairwise stable network.

1. If ni=nj , then ij # g.

We show that if nj�ni , then i would like to link to j. Note that
(ni+2)�(nj+1)>1 while the right-hand side of (V) is at most 1 (the
average of ni fractions). Therefore, i would like to link to j.

2. If nh�Max[nk | ik # g], then i wants to link to h.

Let j be such that ij # g and nj=Max[nk | ik # g]. If ni�nj&1 then
(ni+2)�(nh+1)�1. If (ni+2)�(nh+1)>1 then (V) clearly holds for i 's link
to h. If (ni+2)�(nh+1)=1, then it must be that nh�2 and so nj�2. This
means that the right-hand side of (V) when calculated for adding the link
h will be strictly less than 1. Thus (V) will hold. If ni<nj&1, then
(ni+1)�nj<(ni+2)�(nj+1)<(ni+2)�(nh+1). Since ij # g, it follows from
(V) that

ni+1
nj

�
1

ni&1
:

k : k{j, ik # g

1
nk

.

Also

1
ni&1

:
k : k{j, ik # g

1
nk

�
1
ni

:
k : ik # g

1
nk
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since the extra element on the right-hand side is 1�nj which is smaller than
(or equal to) all terms in the sum. Thus (ni+2)�(nh+1)>
1�ni �k : ik # g 1�nk .

Facts 1 and 2 imply that all players with the maximal number of links
are connected to each other and nobody else. (By 1 they must all be con-
nected to each other. By 2, anyone connected to a player with a maximal
number of links would like to connect to all players with no more than
that number of links, and hence to all those with that number of links.)
Similarly, all players with the next to maximal number of links are con-

nected to each other and to nobody else, and so on.
The only thing which remains to be shown is that if m is the number

of members of one (fully intraconnected) component and n is the next
largest in size, then m>n2. Note that for i in the next largest component
not to be willing to hook to j in the largest component it must be that
(ni+2)�nj+1�1�ni (using (V), since all nodes to which i is connected also
have ni connections). Thus nj+1�ni (ni+2). It follows that nj>n2

i . K

The combination of the efficiency and stability results indicates that
stable networks will tend to be over-connected from an efficiency perspec-
tive. This happens because authors only partly consider the negative effect
their new links have on the productivity of links with existing co-authors.

4. THE GENERAL MODEL

We now turn to analyzing the general model.
As we saw in Propositions 1 and 2, as well as in some of the examples

in the previous section, efficiency and pairwise stability are not always
compatible. That is, there are situations in which no strongly efficient
graphs are pairwise stable. Does this persist in general? In other words, if
we are free to structure the allocation rule in any way we like, is it possible
to find one such that there is always at least one strongly efficient graph
which is pairwise stable? The answer, provided in Theorem 1 below,
depends on whether the allocation rule is balanced across components or
is free to allocate resources to nodes which are not productive.

Definition. Given a permutation ? : N � N, let g?=[ij | i=?(k),
j=?(l ), kl # g]. Let v? be defined by v?(g?)=v(g).10

Definition. The allocation rule Y is anonymous if, for any permutation
?, Y?(i)(g?, v?)=Yi (g, v).

58 JACKSON AND WOLINSKY

10 In the language of social networks, g? and g are said to be isomorphic.
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Anonymity states that if all that has changed is the names of the agents
(and not anything concerning their relative positions or production values
in some network), then the allocations they receive should not change. In
other words, the anonymity of Y requires that the information used to
decide on allocations be obtained from the function v and the particular g,
and not from the label of an individual.

Definition. An allocation rule Y is balanced if �i Yi (g, v)=v(g) for all
v and g.

A stronger notion of balance, component balance, requires Y to allocate
resources generated by any component to that component. Let C(g) denote
the set of components of g. Recall that a component of g is a maximal con-
nected subgraph of g.

Definition. A value function v is component additive if v(g)=
�h # C(g) v(h).11

Definition. The rule Y is component balanced if �i # N(h) Yi (g, v)=v(h)
for every g and h # C(g) and component additive v.

Note that the definition of component balance only applies when v is
component additive. Requiring it otherwise would necessarily contradict
balance.

Theorem 1. If N�3, then there is no Y which is anonymous and compo-
nent balanced and such that for each v at least one strongly efficient graph
is pairwise stable.

Proof. Let N=3 and consider (the component additive) v such that, for
all i, j, and k, v([ij])=1, v([ij, jk])=1+= and v([ij, jk, ik])=1. Thus the
strongly efficient networks are of the form [ij, jk]. By anonymity and com-
ponent balance, Yi ([ij], v)=1�2 and

Yi ([ij, jk, ik], v)=Yk([ij, jk, ik], v)= 1
3 . (V)

Then pairwise stability of the strongly efficient network requires that
Yj ([ij, jk], v)�1�2, since Yj ([ij], v)=1�2. This, together with component
balance and anonymity, implies that Yi ([ij, jk], v)=Yk([ij, jk], v)�
1�4+=�2. But this and (V) contradict stability of the strongly efficient
network when = is sufficiently small (<1�6), since then i and k would both

59SOCIAL AND ECONOMIC NETWORKS

11 This definition implicitly requires that the value of disconnected players is 0. This is not
necessary. One can redefine components to allow a disconnected node to be a component.
One has also to extend the definition of v so that it assigns values to such components.
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gain from forming a link. This example is easily extended to N>3, by
assigning v(g)=0 to any g which has a link involving a player other than
player 1, 2 or 3. K

Theorem 1 says that there are value functions for which there is no
anonymous and component balanced rule which supports strongly efficient
networks as pairwise stable, even though anonymity and component
balance are reasonable in many scenarios. It is important to note that
the value function used in the proof is not at all implausible and is
easily perturbed without upsetting the result.12 Thus, one can make the
simple observation that this conflict holds for an open set of value
functions.

Theorem 1 does not reflect a simple nonexistence problem. We can find
an anonymous and component balanced Y for which there always exists a
pairwise stable network. To see a rule which is both component balanced
and anonymous, and for which there always exists a pairwise stable
network, consider Y� which splits equally each component's value among its
members. More formally, if v is component additive let Y� i (g, v)=v(h)�n(h)
(recalling that n(h) indicates the number of nodes in the component h)
where i # N(h) and h # C(g),13 and for any v that is not component additive
let Y� i (g, v)=v(g)�N for all i. A pairwise stable graph for Y� can be con-
structed as follows. For any component additive v find g by constructing
components h1 , ..., hn sequentially, choosing hi to maximize v(h)�n(h) over
all non-empty components which use only nodes not in � i&1

j=1 N(hj) (and
setting hi=< if this value is always negative). The implication of
Theorem 1 is that such a rule will necessarily have the property that, for
some value functions, all of the networks which are stable relative to it are
also inefficient.

The conflict between efficiency and stability highlighted by Theorem 1
depends both on the particular nature of the value function and on the
conditions imposed on the allocation rule. This conflict is avoided if atten-
tion is restricted to certain classes of value functions, or if conditions on the
allocation rule are relaxed. The following discussion will address each of
these in turn. First, we describe a family of value functions for which this
conflict is avoided. Then, we discuss the implications of relaxing the
anonymity and component balance conditions.

Definition. A link ij is critical to the graph g if g&ij has more com-
ponents than g or if i is linked only to j under g.
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12 One might hope to rely on group stability to try to retrieve efficiency. However, group
stability will simply refine the set of pairwise stable allocations. The result will still be true,
and in fact sometimes there will exist no group stable graph.

13 Use the convention that n(<)=1 and i # N(<) if i is not linked to any other node.
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A critical link is one such that if it is severed, then the component that
it was a part of will become two components (or one of the nodes will
become disconnected). Let h denote a component which contains a critical
link and let h1 and h2 denote the components obtained from h by severing
that link (where it may be that h1=< or h2=<.)

Definition. The pair (g, v) satisfies critical link monotonicity if, for any
critical link in g and its associated components h, h1 , and h2 , we have that
v(h)�v(h1)+v(h2) implies that v(h)�n(h)�max[v(h1)�n(h1), v(h2)�n(h2)].

Consider again Y� as defined above. The following is true.

Claim. If g is strongly efficient relative to a component additive v, then
g is pairwise stable for Y� relative to v if and only if (g, v) satisfies critical
link monotonicity.

Proof. Suppose that g is strongly efficient relative to v and is pairwise
stable for Y� relative to v. Then for any critical link ij, it must be that i and
j both do not wish to sever the link. This implies that v(h)�n(h)�
max[v(h1)�n(h1), v(h2)�n(h2)]. Next, suppose that g is strongly efficient
relative to a component additive v and that the critical link condition is
satisfied. We show that g is pairwise stable for Y� relative to v. Adding or
severing a non-critical link will only change the value of the component in
question without changing the number of nodes in that component. By
strong efficiency and component additivity, the value of this component is
already maximal and so there can be no gain. Next consider adding or
severing a critical link. Severing a critical link leads to no benefit for either
node, since by strong efficiency and component additivity v(h)�
v(h1)+v(h2), which by the critical link condition implies that v(h)�n(h)�
max[v(h1)�n(h1), v(h2)�n(h2)]. By strong efficiency and component
additivity, adding a critical link implies that v(h)�v(h1)+v(h2) (where h1

and h2 are existing components and h is the new component formed by
adding the critical link). Suppose to the contrary that g is not stable to
the addition of the critical link. Then, without loss of generality it is the
case that v(h)�n(h) > v(h1)�n(h1) and v(h)�n(h) � v(h2)�n(h2). Taking a
convex combination of these inequalities (with weights n(h1)�n(h) and
n(h2)�n(h)) we find that v(h)>v(h1)+v(h2), contradicting the fact that
v(h)�v(h1)+v(h2). K

To get some feeling for the applicability of the critical link condition,
note that if a strongly efficient graph has no critical links, then the con-
dition is trivially satisfied. This is true in Proposition 1 (i) and (iii), for
instance. Note, also, that the strongly efficient graphs described in Propo-
sition 1 (ii) and Proposition 4 (i) satisfy the critical link condition, even

61SOCIAL AND ECONOMIC NETWORKS
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though they consist entirely of critical links. Clearly, the value function
described in the proof of Theorem 1 does not satisfy the critical link condition.

Consider next the role of the anonymity and component balance condi-
tions in the result of Theorem 1. The proof of Theorem 1 uses anonymity,
but it can be argued that the role of anonymity is not central in that a
weaker version of Theorem 1 holds if anonymity is dropped. A detailed
statement of this result appears in Section 5. The component balance
condition, however, is essential for the result of Theorem 1.

To see that if we drop the component balance condition the conflict
between efficiency and stability can be avoided, consider the equal split rule
(Yi (g, v)=v(g)�N ). This is not component balanced as all agents always
share the value of a network equally, regardless of their position. This rule
aligns the objectives of all players with value maximization and, hence, it
results in strongly efficient graphs being pairwise stable. In what follows,
we identify conditions under which the equal split rule is the only alloca-
tion rule for which strongly efficient graphs are pairwise stable. This is
made precise as follows.

Definition. The value function v is anonymous if v(g?)=v(g) for all
permutations ? and graphs g.

Anonymity of v requires that v depends only on the shape of g.

Definition. Y is independent of potential links if Y(g, v)=Y(g, w) for
all graphs g and value functions v and w such that there exists j{i so that
v and w agree on every graph except g+ij.

Such an independence condition is very strong. It requires that the
allocation rule ignore some potential links. However, many allocation
rules, such as the equal split and the one based on equal bargaining power
(Theorem 4 below), satisfy independence of potential links.

Theorem 2. Suppose that Y is anonymous, balanced, and independent of
potential links. If v is anonymous and all strongly efficient graphs are stable,
then Yi (g, v)=v(g)�N, for all i and strongly efficient g's.

Proof. If gN is strongly efficient the result follows from the anonymity
of v and Y. The rest of the proof proceeds by induction. Suppose that
Yi (g, v)=v(g)�N, for all i and strongly efficient g's which have k or more
links. Consider a strongly efficient g with k&1 links. We must show that
Yi (g, v)=v(g)�N for all i.

First, suppose that i is not fully connected under g and Yi (g, v)>v(g)�N.
Find j such that ij � g. Let w coincide with v everywhere except on g+ij
(and all its permutations) and let w(g+ij)>v(g). Now, g+ij is strongly
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efficient for w and so by the inductive assumption, Yi (g+ij, w)=w(g+ij)�
N>v(g)�N. By the independence of potential links (applied iteratively, first
changing v only on g+ij, then on a permutation of g+ij, etc.), Yi (g, w)=
Yi (g, v)>v(g)�N. Therefore, for w(g+ij)&v(g) sufficiently small, g+ij is
defeated by g under w (since i profits from severing the link ij), although
g+ij is strongly efficient while g is not��a contradiction.

Next, suppose that i is not fully connected under g and that
Yi (g, v)<v(g)�N. Find j such that ij � g. If Yj (g, v)>v(g)�N we reach a
contradiction as above. So Yj (g, v)�v(g)�N. Let w coincide with v
everywhere except on g+ij (and all its permutations) where w(g+ij)=
v(g). Now, g+ij is strongly efficient for w and hence, by the inductive
assumption, Yi (g+ij, w)=Yj (g+ij, w)=v(g)�N. This and the inde-
pendence of potential links imply that Yi (g+ij, w)=v(g)�N>Yi (g, v)=
Yi (g, w) and Yj (g+ij, w)=v(g)�N�Yj (g, v)=Yj (g, w). But this is a
contradiction, since g is strongly efficient for w but is unstable. Thus we
have shown that for any strongly efficient g, Yi (g, v)=v(g)�N for all i
which are not fully connected under g. By anonymity of v and Y (and total
balance of Y), this is also true for i 's which are fully connected. K

Remark. The proof of Theorem 2 uses anonymity of v and Y only
through their implication that any two fully connected players get the same
allocation. We can weaken the anonymity of v and Y and get a stronger
version of Theorem 2. The allocation rule Y satisfies proportionality if for
each i and j there exists a constant kij such that Yi (g, v)�Yj (g, v)=kij for
any g in which both i and j are fully connected and for any v. The new
Theorem 2 would read: Suppose Y satisfies proportionality and is independ-
ent of potential links. If all strongly efficient graphs are pairwise stable, then
Yi (g, v)=siv(g), for all i, v, and g's which are strongly efficient relative to
v, where si=Yi (gN, v)�v(gN). The proof proceeds like that of Theorem 2
with si taking the place of 1�N.

Theorem 2 only characterizes Y at strongly efficient graphs. If we require
the right incentives holding at all graphs then the characterization is made
complete.

Definition. Y is pairwise monotonic if g$ defeats g implies that
v(g$)>v(g).

Pairwise monotonicity is more demanding than the stability of strongly
efficient networks, and in fact it is sufficiently strong (coupled with
anonymity, balance, and independence of potential links) to result in a
unique allocation rule for anonymous v. That is, the result that
Yi (g, v)=v(g)�N is obtained for all g, not just strongly efficient ones,
providing the following characterization of the equal split rule.
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Theorem 3. If Y is anonymous, balanced, independent of potential links,
and pairwise monotonic, then Yi (g, v)=v(g)�N, for all i, and g, and
anonymous v.

Proof. The theorem is proven by induction. By the anonymity of v and
Y and Yi (gN, v)=v(gN)�N. We show that if Yi (g, v)=v(g)�N for all g
where g has at least k links, then this is true when g has at least k&1 links.

First, suppose that i is not fully connected under g and Yi (g, v)>v(g)�N.
Find j such that ij � g. Let w coincide with v everywhere except that
w(g+ij)>v(g). By the inductive assumption, Yi (g+ij, w)=w(g+ij)�N.
By the independence of potential links, Yi (g, w)=Yi (g, v)>v(g)�N. There-
fore, for w(g+ij)&v(g) sufficiently small g+ij is defeated by g under w
(since i profits from severing ij), while w(g+ij)>w(g), contradicting
pairwise monotonicity.

Next, suppose that i is not fully connected under g and that
Yi (g, v)<v(g)�N. Find j such that ij � g If Yj (g, v)>v(g)�N we reach a
contradiction as above. So Yj (g, v)�v(g)�N. Let w coincide with v
everywhere except on g+ij where w(g+ij)=v(g). By the inductive
assumption, Yi (g+ij, w)=Yj (g+ij, w)=w(g+ij)�N. This and the inde-
pendence of potential links imply that Yi (g+ij, w)=w(g+ij)�N=
v(g)�N>Yi (g, v)=Yi (g, w) and Yj (g+ij, w)=w(g+ij)�N=v(g)�N�
Yj (g, v)=Yj (g, w). This is a contradiction, since w(g)=w(g+ij) but g is
defeated by g+ij.

Thus we have shown that Yi (g, v)=v(g)�N for all i which are not fully
connected under g. By anonymity of v and Y (and total balance of Y), this
is also true for i 's which are fully connected. K

Note that the equal split rule, Yi (g, v)=v(g)�N, for all i and g, satisfies
anonymity, balance, and pairwise monotonicity, and is independent of
potential links. Thus a converse of the theorem also holds.

Theorem 1 documented a tension between pairwise stability and
efficiency. If one wants to guarantee that efficient graphs are stable, then
one has to violate component balance (as the equal split rule does). In
some circumstances, the rule by which resources are allocated may not be
subject to choice, but may instead be determined by some process, such as
bargaining among the individuals in the network. We conclude with a
characterization of allocation rules satisfying equal bargaining power.

Definition. An allocation rule Y satisfies equal bargaining power14

(EBP) if for all v, g, and ij # g

Yi (g, v)&Yi (g&ij, v)=Yj (g, v)&Yj (g&ij, v).
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14 Such an allocation rule, in a different setting, is called the ``fair allocation rule'' by
Myerson [19].
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Under such a rule every i and j gain equally from the existence of their link
relative to their respective ``threats'' of severing this link.

The following theorem is an easy extension of a result by Myerson [19].

Theorem 4. If v is component additive, then the unique allocation rule Y
which satisfies component balance and EBP is the Shapley value of the
following game Uv, g in characteristic function form.15 For each S, Uv, g(S )=
�h # C(g | S ) v(h), where g |S=[ij # g : i # S and j # S].

Although Theorem 4 is easily proven by extending Myerson's [19] proof
to our setting (see the Appendix for details), it is an important strengthen-
ing of his result. In his formulation a graph represents a communication
structure which is used to determine the value of coalitions. The value of
a coalition is the sum over the value of the subcoalitions which are those
which are intraconnected via the graph. For example, the value of coalition
[1, 2, 3] is the same under graph [12, 23] as it is under graph [12, 13, 23].
In our formulation the value depends explicitly on the graph itself, and
thus the value of any set of agents depends not only on the fact that
they are connected, but on exactly how they are connected.16 In all of the
examples we have considered so far, the shape of the graph has played an
essential role in the productivity.

The potential usefulness of Theorem 4 for understanding the implications
of equal bargaining power is that it provides a formula which can be used
to study the stability properties of different organizational forms under
various value functions. For example, the following corollary brings two
implications.

Corollary. Let Y be the equal bargaining power rule from Theorem 4,
and consider a component balanced v and any g and ij # g:

If, for all g$/g, v(g$)�v(g$&ij), then Yi (g, v)�Yi (g&ij, v).

If, for all g$/g, v(g$)�v(g$+ij), then Yi (g, v)�Yi (g+ij, v).

This follows directly from inspection of the Shapley value formula.
The first line of the corollary means, for example, that if v is such that

links are of diminishing marginal contribution, then stable networks will
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15 Yi (g, v)=SVi (Uv, g), where the Shapley value of a game U in characteristic function form
is SVi (U )=�S/N&i (U(S+i)&U(S )) *S ! (N&*S&1)!�N !.

16 The graph structure is still essential to Myerson's formulation. For instance, the value of
the coalition [1, 3] is not the same under graph [12, 23] as it is under graph [12, 13, 23],
since agents 1 and 3 cannot communicate under the graph [12, 23] when agent 2 is not
present.
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not be too sparse in the sense that a subgraph of the strongly efficient
graph will not be stable. Thus, in some circumstances, the equal bargaining
power rule will guarantee that strongly efficient graphs are pairwise stable.
However, as we saw in Theorem 1 this will not always be the case.

5. DISCUSSION OF THE STABILITY NOTION

The notion of stability that we have employed throughout this paper is
one of many possible notions. We have selected this notion, not because it
is necessarily more compelling than others, but rather because it is a
relatively weak notion that still takes into account both link severance and
link formation (and provides sharp results for most of our analysis). The
purpose of the following discussion is to consider the implications of
modifying this notion. At the outset, it is clear that stronger stability
notions (admitting fewer stable graphs) will just strengthen Theorems 1, 2,
and 3 (as well as Propositions 2, 3, and 4). That is, stronger notions would
allow the conclusions to hold under the same or even weaker assumptions.
Some of the observations derived in the examples change, however,
depending on how the stability notion is strengthened.

Let us now consider a few specific variations on the stability notion and
comment on how the analysis is affected. First, let us consider a stronger
stability notion that still allows only link severance by individuals and link
formation by pairs, but implicitly allows for side payments to be made
between two agents who deviate to form a new link.

The graph g$ defeats g under Y and v (allowing for side payments) if
either

(i) g$=g&ij and Yi (g, v)<Yi (g$, v) or Yj (g, v)<Yj (g$, v), or

(ii) g$=g+ij and Yi (g$, v)+Yj (g$, v)>Yi (g, v)+Yj (g, v).

We then say that g is pairwise stable allowing for side payments under
Y and v, if it is not defeated by any g$ according to the above definition.

Note that in a pairwise stable network allowing for side payments
payoffs are still described by Y rather than Y plus transfers. This reflects
the interpretation that Y is the allocation to each agent when one includes
the side payments that have already been made. The network, however,
still has to be immune against deviations which could involve additional
side payments. This interpretation introduces an asymmetry in the con-
sideration of side payments since severing a link, (i), can be done
unilaterally, and so the introduction of additional side payments will not
change the incentives, while adding a link, (ii), requires the consent of two
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agents and additional side payments relative to the new graph may play a
role.17

Under this notion of stability allowing for side payments, a version of
Theorem 1 holds without the anonymity requirement.

Theorem 1$. If N�3, then there is no Y which is component balanced
and such that for each v no strongly efficient graph is defeated (when allow-
ing for side payments) by an inefficient one.

The proof is in the Appendix. As this version reproduces the
impossibility result of Theorem 1 without the anonymity restriction on Y,
it supports our earlier assertion that this result was not driven by the
anonymity of Y, but rather by the component balance condition.

Stability with side payments also results in stronger versions of
Theorems 2 and 3 which are included in the Appendix.

Another possible strengthening of the stability notion would allow for
richer combinations of moves to threaten the stability of a network. Note
that the basic stability notion we have considered requires only that a
network be immune to one deviating action at a time. It is not required
that a network be immune to more complicated deviations, such as a
simultaneous severance of some existing links and an introduction of a new
link by two players (which is along the lines of the stability notion used in
studying the marriage problem). It is also not required that a network be
immune to deviations by more than two players simultaneously. Actually,
the notion of pairwise stability that we have employed does not even con-
template the severance of more than one link by a single player.

The general impact of such stronger stability notions would be to
strengthen our results, with the possible complication that in some cases
there may exist no stable network. As an example, reconsider the co-author
model and allow any pair of players to simultaneously sever any set of their
existing links. Based on Proposition 4(ii), we know that any graph that
could be stable under such a new definition must have fully intraconnected
components. However, now a pair of players can improve for themselves
by simultaneously severing all their links, except the link joining them. It
follows that no graph is stable.

A weaker version of the stability notion can be obtained by altering (ii)
to require that both deviating players who add a link be strictly better off
in order for a new graph to defeat an old one. The notion we have used
requires that one player be strictly better off and the other be weakly better
off. Most of our discussion is not sensitive to this distinction; however, the
conclusions of Theorems 2 and 3 are, as illustrated in the following exam-
ple. Let N=[1, 2, 3, 4], g=[14, 23, 24, 34], and consider v with v(g)=1,

67SOCIAL AND ECONOMIC NETWORKS

17 The results still hold if (i) is also altered to allow for side payments.



www.manaraa.com
File: 642J 217825 . By:BV . Date:19:09:96 . Time:15:00 LOP8M. V8.0. Page 01:01
Codes: 3225 Signs: 2594 . Length: 45 pic 0 pts, 190 mm

v(g$)=1 if g$ is a permutation of g, and v(g$)=0 for any other g$. Consider
Y such that Y1(g$, v)=1�8 Y2(g$, v)=Y3(g$, v)=1�4 and Y4(g$, v)=3�8
if g$ is a permutation of g, and Yi (g$, v)=0 otherwise. Specify Yi (g$, w)=
w(g$)�N for w{v, except if g$ is a permutation of g and w agrees with v on
g and all its subgraphs, in which case set Yi (g$, w)=Yi (g$, v). This Y is
anonymous, balanced, and independent of potential links. However, it is
clear that Y1(g, v){v(g)�N. To understand where Theorems 2 and 3 fail,
consider g$=g+12 and w which agrees with v on all subgraphs of g but
gives w(g+12)=1. Under the definition of stability that we have used in
this paper, g+12 defeats g since player 1 is made better off and 2 is
unchanged (Y1(g+12, w)=1�4=Y2(g+12, w)); however, under this
weakened notion of stability g+12 does not defeat g.

One way to sort out the different notions of stability would be to look
more closely at the non-cooperative foundations of this model. Specifica-
tions of different procedures for graph formation (e.g., an explicit non-
cooperative game) and equilibria of those procedures would lead to
notions of stability. Some of the literature on communication structures
have taken this approach to graph formation (see, e.g., Aumann and
Myerson [1], Qin [23], and Dutta et al. [3]). Let us make only one
observation in this direction. Central to our notion of stability is the idea
that a deviation can include two players who come together to form a
new link. The concept of Nash equilibrium does not admit such con-
siderations. Incorporating deviations by pairs (or larger groups) of agents
might most naturally involve a refinement of Nash equilibrium which
explicitly allows for such deviations, such as strong equilibrium, coalition-
proof Nash equilibrium,18 or some other notion which allows only for
certain coalitions to form. This constitutes a large project which we do
not pursue here.

APPENDIX

Theorem 1$. If N�3, then there is no Y which is component balanced
and such that for each v no strongly efficient graph is defeated by an inef-
ficient one.

Remark. In fact, it is not required that no strongly efficient graph be
defeated by an inefficient one, but rather that there be some strongly
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18 One can try to account for the incentives of pairs by considering an extensive form game
which sequentially considers the addition of each link and uses a solution such as subgame
perfection (as in Aumann and Myerson [1]). See Dutta et al. [3] for a discussion of this
approach and an alternative approach based on coalition-proof Nash equilibrium.
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efficient graph which is not defeated by any inefficient one and such that
any permutation of that graph which is also strongly efficient is not
defeated by any inefficient one. This is clear from the following proof.

Proof. Let N=3 and consider the same v given in the proof of
Theorem 1. (For all i, j, and k, v([ij])=1, v([ij, jk])=1+= and
v([ij, jk, ik])=1, where the strongly efficient networks are of the form
[ij, jk].) Without loss of generality, assume that Y1([12]), v)�1�2 and
Y2([23], v)�1�2. (Given the component balance, there always exists such
a graph with some relabeling of players.) Since [12, 13] cannot be defeated
by [12], it must be that Y1([12, 13], v)�1�2. It follows from component
balance that 1�2+=�Y2([12, 13], v)+Y3([12, 13], v). Since [12, 13] can-
not be defeated by [12, 13, 23], it must be that

1
2+=�Y2([12, 13], v)+Y3([12, 13], v)

�Y2([12, 13, 23], v)+Y3([12, 13, 23], v). (V)

Similarly

1
2+=�Y1([12, 23], v)+Y3([12, 23], v)

�Y1([12, 13, 23], v)+Y3([12, 13, 23], v). (VV)

Now note that adding (V) and (VV) we get

Y2([12, 13], v)+Y3([12, 13], v)+Y1([12, 23], v)+Y3([12, 23], v)

�Y1([12, 13, 23], v)+Y2([12, 13, 23], v)+2Y3([12, 13, 23], v).

By component balance, we rewrite this as

2+2=&Y1([12, 13], v)&Y2([12, 23], v)�1+Y3([12, 13, 23], v).

Thus

Y1([12, 13], v)+Y2([12, 23], v)�1+2=.

Then since no strongly efficient graph is defeated by an inefficient one, we
know that Y1([12, 13], v)�Y1([12], v) and Y2([12, 23], v)�Y2([23], v),
and so

Y1([12], v)+Y2([23], v)�1+2=.

69SOCIAL AND ECONOMIC NETWORKS
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Since Y1([12], v)�1�2, we know that Y2([23], v)�1�2+2=. Thus, by
component balance

Y3([23], v)� 1
2&2=.

Since [13, 23] cannot be defeated by [23], it must be that
Y3([13, 23], v)�1�2&2=. It follows from component balance that
1�2+3=�Y1([13, 23], v)+Y2([13, 23], v). Since [13, 23] cannot be
defeated by [12, 13, 23], it must be that

1
2+3=�Y1([13, 23], v)+Y2([13, 23], v)

�Y1([12, 13, 23], v)+Y2([12, 13, 23], v). (VVV)

Adding (V), (V), and (VVV), we find that

3
2+5=�2[Y1([12, 13, 23], v)+Y2([12, 13, 23], v)

+Y3([12, 13, 23], v)]=2,

which is impossible for =<1�10.
Again, this is easily extended to N>3, by assigning v(g)=0 to any g

which has a link involving a player other than player 1, 2, or 3. K

Definition. The allocation rule Y is continuous, if for any g, and v and
w that differ only on g and for any =, there exists $ such that
|v(g)&w(g)|<$ implies that |Yi (g, v)&Yi (g, w)|<= for all i # N(g).

Theorem 2$. Suppose that Y is anonymous, balanced, continuous, and
independent of potential links. If v is anonymous and no strongly efficient
graph is defeated (allowing for side payments) by an inefficient one, then,
Yi (g, v)=v(g)�N, for all i and strongly efficient g's.

Proof. If gN is strongly efficient the result follows from the anonymity
of v and Y. The rest of the proof proceeds by induction. Suppose that
Yi (g, v)=v(g)�N, for all i and strongly efficient g's which have k or more
links. Consider a strongly efficient g with k&1 links. We must show that
Yi (g, v)=v(g)�N for all i.

First, suppose that i is not fully connected under g and Yi (g, v)>v(g)�N.
Find j such that ij � g. Let w coincide with v everywhere except on g+ij
(and all its permutations) and let w(g+ij)>v(g). Now, g+ij is strongly
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efficient for w and so by the inductive assumption, Yi (g+ij, w)=w(g+ij)�
N>v(g)�N. By the independence of potential links (applied iteratively, first
changing v only on g+ij, then on a permutation of g+ij, etc.),
Yi (g, w)=Yi (g, v)>v(g)�N. Therefore, for w(g+ij)&v(g) sufficiently
small, g+ij is defeated by g under w (since i profits from severing the link
ij), although g+ij is strongly efficient while g is not��a contradiction.

Next, suppose that i is not fully connected under g and that
Yi (g, v)<v(g)�N. Find j such that ij � g. If Yj (g, v)>v(g)�N we reach a
contradiction as above. So Yj (g, v)�v(g)�N. Let =<[v(g)�N&Yi (g, v)]�2
and let w coincide with v everywhere except on g+ij (and all its permuta-
tions) and let w(g+ij)=v(g)+$�2 where $ is the appropriate $(=) from the
continuity definition. Now, g+ij is strongly efficient for w and hence, by
the inductive assumption, Yi (g+ij, w)=Yj (g+ij, w)=[v(g)+$�2]�N.
Define u which coincides with v and w everywhere except on g+ij (and all
its permutations) and let u(g+ij)=w(g)&$�2. By the continuity of Y,
Yi (g+ij, u)�v(g)�N&= and Yj (g+ij, u)�v(g)�N&=. Thus, we have
reached a contradiction, since g is strongly efficient for u but defeated by
g+ij since Yi (g+ij, u)+Yj (g+ij, u)�2v(g)�N&2=>2v(g)�N&[v(g)�
N&Yi (g, v)]�Yi (g, u)+Yj (g, u). Thus we have shown that for a strongly
efficient g, Yi (g, v)=v(g)�N for all i which are not fully connected under g.
By anonymity of v and Y (and total balance of Y), this is also true for i 's
which are fully connected. K

Remark. The definition of ``defeats'' allows for side payments in (ii),
but not in (i). To be consistent, (i) could be altered to read Yi (g$, v)+
Yj (g$, v)>Yi (g, v)+Yj (g, v), as side payments can be made to stop an
agent from severing a link. Theorem 2 is still true. The proof would have
to be altered as follows. Under the new definition (i) the cases ij � g and
Yi (g, v)+Yj (g, v)>2v(g)�N or Yi (g, v)+Yj (, v)<2v(g)�N would follow
roughly the same lines as currently is used for the case where ij � g, and
Yi (g, v)<v(g)�N and Yj (g, v)�v(g)�N. (For Yi (g, v)+Yj (g, v)>2v(g)�N
the argument would be that ij would want to sever ij from g+ij when g+ij
is strongly efficient.) Then note that it is not possible that for all ij � g,
Yi (g, v)+Yj (g, v)=2v(g)�N, without having only two agents ij who are
not fully connected, in which case anonymity requires that they get the
same allocation, or by having Yi=v(g)�N for all i which are not fully con-
nected.

Theorem 2 only characterizes Y at strongly efficient graphs. If we require
the right incentives holding at all graphs then the characterization is made
complete:

Definition. Y is pairwise monotonic allowing for side payments if g$
defeats (allowing for side payments) g implies that v(g$)�v(g).
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Theorem 3$. If Y is anonymous, balanced, independent of potential links,
and pairwise monotonic allowing for side payments, then Yi (g, v)=v(g)�N,
for all i, and g, and anonymous v.

Proof. The theorem is proven by induction. By the anonymity of v and
Y and Yi (gN, v)=v(gN)�N. We show that if Yi (g, v)=v(g)�N for all g
where g has at least k links, then this is true when g has at least k&1 links.

First, suppose that i is not fully connected under g and Yi (g, v)>v(g)�N.
Find j such that ij � g. Let w coincide with v everywhere except that
w(g+ij)>v(g). By the inductive assumption, Yi (g+ij, w)=w(g+ij)�N.
By the independence of potential links, Yi (g, w)=Yi (g, v)>v(g)�N. There-
fore, for w(g+ij, w)&v(g) sufficiently small g+ij is defeated by g under w
(since i profits from severing ij), while w(g+ij)>w(g), contradicting
pairwise monotonicity.

Next, suppose that i is not fully connected under g and that
Yi (g, v)<v(g)�N. Find j such that ij � g. If Yj (g, v)>v(g)�N we reach a
contradiction as above. So Yj (g, v)�v(g)�N. Let w coincide with v
everywhere except that w(g+ij)<v(g) and v(g)�N&w(g+ij)�
N< 1

2(v(g)�N&Yi (g, v)). Thus 2w(g+ij)�N>v(g)�N+Yi (g, v))�
Yj (g, v))+Yi (g, v)). By the inductive assumption, Yi (g+ij, w)=
Yj (g+ij, w)=w(g+ij)�N. Thus, we have reached a contradiction, since
w(g)>w(g+ij) but g is defeated by g+ij since Yi (g+ij, w)+
Yj (g+ij, w)>Yi (g, w)+Yj (g, w).

Thus we have shown that Yi (g, v)=v(g)�N for all i which are not fully
connected under g. By anonymity of v and Y (and total balance of Y), this
is also true for i 's which are fully connected. K

Proof of Theorem 4. Myerson's [19] proof shows that there is a unique
Y which satisfies equal bargaining power (what he calls fair, having fixed
our v) and such that � Yi is a constant across i 's in any connected compo-
nent when other components are varied (which is guaranteed by our com-
ponent balance condition).

We therefore have only to show that Yi (g, v)=SVi (Uv, g) (as defined in
the footnote below Theorem 4) satisfies component balance and equal
bargaining power.

Fix g and define Y g by Y g(g$)=SV(Uv, g & g$). (Note that Uv, g & g$ sub-
stitutes for what Myerson calls v�g$. With this in mind, it follows from
Myerson's proof that Y g satisfies equal bargaining power and that for
any connected component h of g, �i # h Y g

i (g)=Uv, g(N(h)). Since Y g(g)=
Y(g), this implies that �i # h Y g

i (g)=Uv, g(N(h))=v(h), so that Y satisfies
component balance. Also, since Y g satisfies equal bargaining power, we
have that Y g

i (g)&Y g
i (g&ij)=Y g

j (g)&Y g
j (g&ij). Now, Y g

i (g&ij)=
SVi (Uv, g & g&ij)=SVi (Uv, g&ij)=Yi (g&ij). Therefore, Yi (g)&Yi (g&ij)=
Yj (g)&Yj (g&ij), so that Y satisfies equal bargaining power as well.
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